
Validation Processor
Implementation Report

Submitted To: Program Manager
GeoConnections
Victoria, BC, Canada

Submitted By: Jody Garnett
Brent Owens
Refractions Research Inc.
Suite 400, 1207 Douglas Street
Victoria, BC, V8W-2E7
jgarnett@refractions.net
Phone: (250) 383-3022
Fax: (250) 383-2140

- 2 -

Table of Contents

1 INTRODUCTION ...3

2 VALIDATION PROCESSOR...4

2.1 OVERVIEW...4
2.2 RECOMMENDATIONS..4

2.2.1 Simplify the runFeatureTests() Method ..5
2.2.2 Implement Test Cost ...5
2.2.3 Exception Handling in ValidationResults ...5

3 VALIDATION TEST IMPLEMENTATIONS..6

3.1 OVERVIEW...6
3.1.1 Feature Validation..6
3.1.2 Integrity Validation...6

3.2 IMPLEMENTED VALIDATIONS..6
3.3 RECOMMENDATIONS..7

3.3.1 Design enhancements..7
3.3.2 Additional Validation Implementations ..7
3.3.3 Caching ...8

- 3 -

1 INTRODUCTION

This document describes the changes we have made during the implementation
of our initial design, and the future changes that are planned. Our initial design
held up very well during implementation and most changes are minor and will
have very little impact on existing code.

- 4 -

2 VALIDATION PROCESSOR

2.1 Overview
The Validation Processor manages the Feature Validation and Integrity
Validation Tests. Every feature that is modified is checked against the list of
validation tests and has the appropriate tests run against it. A Visitor design
pattern is used to keep track of the results of the validation tests. When the tests
have been completed, the Visitor is returned with all of the results to determine if
the updated features have passed the tests. If the features failed, the user is
given the list of errors.

validate(in feature : Feature, in type : FeatureType, in results : ValidationResults) : boolean

«interface»
FeatureValidation

+validate(in layers : Map, in envelope : Object, in results : ValidationResults) : boolean

«interface»
IntegrityValidation

+setValidation(in validation) : void
+error(in feature : Feature, in message : String) : void
+warning(in feature : Feature, in message : String) : void

«interface»
ValidationResults

setName()
getName()
setDescription()
getDescription()
getPriority()
setTypeNames()
getTypeNames()

Validation

Figure 1 - Validation API

2.2 Recommendations
Our initial design held up to the implementation with very few improvements
that are needed for future development. This section documents our planned
modifications.

- 5 -

2.2.1 Simplify the runFeatureTests() Method

Currently, runFeatureTests requires that the user pass in the FeatureType of the
FeatureCollection that is being validated. However, the FeatureType can be
obtained from the FeatureCollection and thus is not needed from the user.

Original

Public void runFeatureTests(FeatureType type, FeatureCollection collection,
ValidationResults results);

New

Public void runFeatureTests(FeatureCollection collection, ValidationResults
results);

2.2.2 Implement Test Cost

In order to allow efficient validation tests to fail on dirty features early on, before
expensive tests are run, we have proposed the implementation of a test cost that
would be determined by the validation test programmer. The cost would rank the
validation tests so the validation processor can sort them. This feature has been
in our design but has not yet made it into implementation.

2.2.3 Exception Handling in ValidationResults

Validation tests have the ability to throw exceptions to indicate that the test was
not performed. These errors are not related to the Validation rules specified by
the Validation plug-ins and the user should be warned of this event. This will
speed up the debug process of plug-ins. We plan to have the exceptions recorded
into the ValidationResults Visitor and appear as a type of error, separate from
validation errors, for the user to track down.

- 6 -

3 VALIDATION TEST IMPLEMENTATIONS

3.1 Overview
We have implemented various validation plug-ins to test the functionality of our
Validation Processor. These plug-ins are loaded and configured, then run against
the features that are being modified.

3.1.1 Feature Validation

Feature Validation tests are performed on one feature at a time and have no
ability to obtain information from other features. These validations are usually
relatively simple and quick to perform.

3.1.2 Integrity Validation

Integrity Validation tests are performed across multiple features and possibly
multiple feature types. These validations can be quite costly and are therefore
performed after the feature validation tests so that the validation processor has a
chance to quit early on.

3.2 Implemented Validations
We have implemented and tested several Validations for both Feature and
Integrity situations.

 Test Name Validation Type Description
IsValidGeometry Feature Validation Tests to see if the Geometry is valid.

IsSingleSegmentLine Feature Validation Tests to see if a line is made of only
two points (one segment).

NoSelfIntersectionLine Feature Validation Tests to see if a line intersects itself.

NoSelfOverlappingLine Feature Validation Tests to see if a line overlaps itself.
This test is not yet fully operational.

LinesNotIntersecting Integrity Validation Tests to make sure that no lines,
anywhere, are intersecting.

UniqueFID Integrity Validation Tests to make sure that no features
have the same feature ID.

- 7 -

3.3 Recommendations

3.3.1 Design enhancements

We will be implementing more functionality into the Integrity Validations to allow
them to pull from the database with the Envelope bounding box they were
provided. Right now the existing tests require all of the features to be passed into
the integrity validations in order to perform testing.

3.3.2 Additional Validation Implementations

We also plan to implement more validation tests to fulfill the requirements of the
DRAQA (Digital Road Atlas Quality Assurance) test suite and ESRI’s ArcGIS
Geodatabase. These tests include:

• Area boundary must be covered by boundary

• Boundary must be covered

• Contains Point

• Endpoint must be covered

• Must be covered

• Must be covered by boundary

• Must be covered by endpoints

• Must be covered by feature class

• Must be properly inside polygons

• Must cover each other

• Must not have dangles

• Must not have gaps

• Must not have Pseudo-nodes

• Must not intersect or touch interior

• Must not overlap

• Must not overlap with

• Point must be covered by Line

• Value gap check

• Value overlap check

• Angle size check

• Attribute specification check

- 8 -

3.3.3 Caching

Integrity tests are the most costly of the validations because they span many
Features and FeatureTypes. In order to improve performance, we plan to cache
pre-built Feature networks, and make spatial indexes available to all Integrity
tests. This will prevent the validations from generating this critical information
each time they are called.

