
Validating Web Feature Server
Implementation Report

Submitted To: Program Manager
GeoConnections
Victoria, BC, Canada

Submitted By: Jody Garnett
Refractions Research Inc.
Suite 400 – 1207 Douglas Street
Victoria, BC, V8W-2E7
jgarnett@refractions.net
Phone: (250) 383-3022
Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

TABLE OF CONTENTS..2

TABLE OF FIGURES..3

TABLE OF TABLES..3

1 INTRODUCTION ...4

2 GEOSERVER CONFIGURATION DESIGN ...5

2.1 DESIGN SUCCESSES ..6
2.2 DESIGN EXTENSIONS..6

2.2.1 Validation Framework Extension ..7
2.3 DESIGN RECOMMENDATIONS..8

2.3.1 Centralize Application Logic ...8
2.3.2 Proposed Data Layer..9
2.3.3 FeatureType Definition ...9
2.3.4 Configure Level of WFS Support ...10

3 GEOSERVER CONFIGURATION IMPLEMENTATION ..11

3.1 IMPLEMENTATION SUCCESSES .. 11
3.1.1 Removed Dependence on Singletons ..11
3.1.2 Data Transfer Objects (DTO)..13
3.1.3 Ported JUMP Network Builder..13

3.2 IMPLEMENTATION EXTENSIONS.. 14
3.2.1 Attribute Based XMLSchema Generation ...14
3.2.2 Handling of Type References...15

3.3 IMPLEMENTATION RECOMMENDATIONS.. 16
3.3.1 Sample Configuration ...16
3.3.2 Phase out the use of Document Object Model XML Parsing16
3.3.3 GML Harmonization ..16
3.3.4 Remove Data Transfer Object Delegates..17

4 BIBLIOGRAPHY..18

- 3 -

TABLE OF FIGURES

Figure 1 - GeoServer Layer Diagram... 5

Figure 2 - Proposed Data Layer.. 9

TABLE OF TABLES

Table 1 - GeoServer Data Matrix.. 6

Table 2 - Validation Processor Data Matrix ... 7

Table 3 - Duplicate Application Logic ... 8

Table 4 - WFS Level of Service ... 10

- 4 -

1 INTRODUCTION

This document outlines our experience in extending the Validating Web Feature
Server to support a robust configuration model.

A limited number of changes have been made with respect to our GeoServer Web
Based Configuration Design Document and Validation Implementation Report.

The GeoServer configuration process has been modified to:

- Clarify separation of application layers

- Clarify use of FeatureType References

- Allow internationalization support

This design has been very well received by the development community and is
being used as an example for further development.

The validation API has remained stable through this phase of development.
Minor modifications have been made to allow for internationalization and to
clarify the handling of FeatureType references.

- 5 -

2 GEOSERVER CONFIGURATION DESIGN

The Web Based Configuration Design document provided a series of design goals
for updating the GeoServer Configuration System:

• Separate out the Configuration Model from the GeoServer Application

• Build a Struts Web Interface against the Configuration Model

• Allow XML persistence of the GeoServer Application Configuration state

• Maintain the existing configuration file format

To meet these requirements, Layered Architecture was proposed (Figure 1).

GeoServer Application Tier

Web Container Web Tier

geoserver.form

Web Browser Client Tier

HTML Form

geoserver.servlet

Describe

geoserver.action

WMSDescriptionAction

WMSDescriptionForm

geoserver.request

OGC Clients Client Tier

WFS ClientWMS Client

GetMapRequest

GetMap

DescribeRequest

geoserver.response

GetMapResponse DescribeResponse

geoserver.global

WMS WFS Catalog

geoserver.config

WMSConfig

cookie
(session)

GeoTools
PostgisDataStoreOracleDataStore

JSPXML

ShapeFileDataStore

xmlDTO

PostgisOracleShapefile

DTO

Figure 1 - GeoServer Layer Diagram

- 6 -

2.1 Design Successes
The design for the GeoServer Configuration System has:

- Succeeded in meeting our Requirements.

- Succeeded in separating the GeoServer application, configuration, and
persistence subsystems

- Succeeded in allowing unit testing of Core GeoServer components

- Succeeded in maintaining a clear separation between GeoServer and the
Validation Framework

2.2 Design Extensions
The previous Web Based Configuration Design document outlined the layer
structure of the GeoServer application.

Table 1 lists the GeoServer classes by both package and subsystem (interfaces
are marked in italics):

GeoTools Global DTO Config Form
GeoServer
Contact

GeoServerDTO
ContactDTO

GeoServerConfig GeoServerConfigurationForm

WMS WMSDTO WMSConfig WMSDescriptionForm
WMSContentForm

WFS WFSDTO WFSConfig WFSDescriptionForm
WFSContentForm

Catalog Data DataDTO DataConfig

NamespaceMetaData NamespaceInfo NamespaceDTO NamespaceConfig DataNamespacesForm

DataStoreMetaData DataStoreInfo DataStoreInfoDTO DataStoreInfoConfig DataDataStoresEditorForm
DataDataStoresNewForm
DataDataStoresSelectForm

FeatureTypeMetaData FeatureTypeInfo FeatureTypeInfoDTO FeatureTypeInfoConfig DataFeatureTypesEditorForm
DataFeatureTypesNewForm
DataFeatureTypesSelectForm

DataAttributeTypesNewForm
DataAttributeTypesSelectForm

Styles StyleDTO StyleConfig DataStylesFormForm

Table 1 - GeoServer Data Matrix

The GeoTools data module has been extended with Catalog and Metadata
interfaces. The use of GeoTools2 interfaces by classes in the global layer allows
the Validation Processor to be written in an application independent manner.

- 7 -

2.2.1 Validation Framework Extension

The extension of our design for the validation processor to accommodate a web
based user interface was accomplished without incident.

Table 2 lists the Validation classes and interfaces by package (interfaces are
marked in italics):

Validation Validation DTO Config Form
ValidationProcessor ValidationConfig

PlugIn PlugInDTO PlugInConfig

TestSuite TestSuiteDTO TestSuiteConfig ValidationTestSuiteNewForm
ValidationTestSuiteSelectForm

Validation TestDTO TestConfig ValidationTestEditorForm
ValidationTestNewForm
ValidationTestSelectForm

Table 2 - Validation Processor Data Matrix

We have maintained a clear separation between the Validation Processor and the
GeoServer application.

- 8 -

2.3 Design Recommendations
Over the course of development we have arrived at several recommendations for
the design of the existing GeoServer application. These recommendations will be
placed in the GeoServer bug tracking system (http://jira.codehaus.org/).

2.3.1 Centralize Application Logic

The advent of the WMS and WFS classes in the global package presents an
opportunity to improve the GeoServer Application. Currently GeoServer has
dispersed application logic across several Servlets.

These Servlets are used to implement the WFS and WMS protocols according to
the Transaction Script pattern (Fowler 110).

Transaction Scripts represent an Object Oriented Idiom similar in effect to
procedural programming. The use of this design has resulted in significant
duplication of functionality.

By moving common functionality to the WMS and WFS classes in the global
package we can reduce duplication.

Request Servlet Duplication

WFS GetCapabilities wfs/GetCapabilies WFS

WFS DescribeFeatureType wfs/DescribeFetureType WFS

WFS GetFeature
WFS GetFeatureWIthLock

wfs/GetFeature WFS, Data, FeatureTypeInfo

WFS LockFeature wfs/LockFeature WFS, Data, FeatureTypeInfo

WFS Transaction wfs/Transaction WFS, Data, FeatureTypeInfo

WMS GetCapabilities wms/GetCapabilities WMS

WMS GetMap wms/GetMap WMS

WMS GetFeatureInfo wms/GetFeatureInfo WMS, Data, FeatureTypeInfo

WMS Describe Layer wms/DescribeLayer WMS, Data, FeatureTypeInfo

Table 3 - Duplicate Application Logic

Specific recommendations:

• Move FeatureType Schema generation from DescribeFeatureType to
FeatureTypeInfo. This functionality is currently duplicated.

• Allow WFS to publish a selection of FeatureTypes defined in Data. This
functionality is currently duplicated in the FeatureTypeInfo.

• Allow WMS to publish a selection of FeatureTypes defined in Data. This
functionality is currently duplicated in the FeatureTypeInfo.

• Allows WMS to control the style associated with a Layer.

It may be noted that the global Data classes module has already accomplished
this centralization for the GeoServer Data classes and the Validation Processor.

- 9 -

2.3.2 Proposed Data Layer

WMS and WFS Servlets should not access Catalog information directly. A more
robust implementation would access the required data through the WFS or WMS
global implementations.

GeoServer Application Tier

ValidationGlobal

GeoTools Data Tier

WMS WFS

PostgisDataStoreOracleDataStoreShapeFileDataStore

PostgisOracleShapefile

Data

servlet.wms

GetMap

servlet.wfs

ValidationProcessor

GetFeature Transaction

Catalog CatalogCatalog

Figure 2 - Proposed Data Layer

Advantages of this modification:

- Allows separate enabling of FeatureTypes for WFS and WMS

- Allows the relocation of Style to WMS

We may choose to have the WMS and WFS classes access the Data class through
the GeoTools2 Catalog interface in a manner similar to the Validation Processor.

2.3.3 FeatureType Definition

GeoServer currently uses XML Fragments for the schema.xml and info.xml
used to describe FeatureTypes. These fragments are stored in a directory based
on the FeatureType name.

Recommendations for FeatureType Definition:

- Use complete XML Documents for schema.xml and info.xml

- Remove orphaned <attributes> tag from info.xml.

- Store FeatureType configuration by DataStore Id

These changes would allow the use of a validating XML parser and prevent
FeatureType name conflicts across data sources.

- 10 -

2.3.4 Configure Level of WFS Support

GeoServer is compliant with the full “Transactional Web Feature Server” level of
service as defined by the OGC. The ability to limit the capabilities of GeoServer
has been frequently requested.

The OGC defines two levels of service that a Web Feature Server may provide and
still remain compliant:

- Basic WFS:
GetCapabilities, DescribeFeatureType and GetFeature

- Transactional WFS:
Transaction operation, with optional LockFeature

To meet user requests we propose adding a service level tag to the configuration
process.

Intended modification to services.xml:

<service type="WFS">
 <title> My WFS </title>
 ...
 <serviceLevel>Basic</serviceLevel>
 ...
</service>

The following table defines our recommended level of Service.

Level of Service Operations (additive) OGC Compliant

Basic GetCapabilities
DescribeFeatureType
GetFeature

Basic Web Feature Server

Transactional Transaction Transactional Web Feature Server

Complete LockFeature

Table 4 - WFS Level of Service

This recommendation does not interact with the Validation Processor. The
Validation Processor, if configured, will be used for all Transaction operations
regardless of level of service.

- 11 -

3 GEOSERVER CONFIGURATION IMPLEMENTATION

3.1 Implementation Successes
While we are always pleased to work with a dynamic project such as GeoServer
we are particularly happy with several aspects of our recent work.

3.1.1 Removed Dependence on Singletons

We have been able to remove the previous design’s dependence on the Singleton
Pattern (GOF 127).

Singletons represent an Object Oriented Idiom similar in effect to global
variables. The previous Servlet implementations used this pattern to locate the
current application’s configuration and data source connections.

Example Singleton use:

class MyResponse extends Response {
 public void execute(Request request) {
 GlobalConfig config = GlobalConfig.getInstance();
 …
 }
}

The use of a global singleton for application configuration prevents the use of
unit testing during development. In order to test any part of the application, all of
the application had to be working.

The storage of this information has been migrated to the Web Container. We have
made use of the Web Container’s life cycle to manage the startup and shutdown
process of the GeoServer application.

Prior to these changes the first call to GeoServer was used to configure the
application. This practice often resulted in a time-out error. Configuring the
application during startup has eliminated this problem.

Our solution to the Singleton issue in the previous design included the following
observations:

• AbstractService is used as the super class for all GeoServer Servlets.

• AbstractService makes use of the following workflow:

1. Get a Request Reader

2. Ask the Request Reader for the Request object

3. Ask the Response Handler to execute the Request

4. Set the http response content type

5. Write to the http response's output stream

- 12 -

Our solution to the problem included modifying the workflow to provide the
original HttpServletRequest which generated the GeoServer Request. The
HttpServletRequest received from the user allows the system to locate the web
container, which contains a copy of the application’s configuration and data
source connections.

This refactoring of the Servlets using the Web Container was handled by
extending the base Request class:
class Request {
 GeoServer getGeoServer()
 ValidationProcessor getValidationProcessor()
 UserContainer getUserContainer()
 HttpServletRequest getHttpServletRequest()
 void setHttpServletRequest(HttpServletRequest httpServletRequest)
}

Example Use of Request:

class MyResponse extends Response {
 public void execute(Request request) {
 GeoServer config = request.getGeoServer();
 }
}

Our solution was also instrumental in sharing the current GeoServer application
configuration with the configuration management user interface. Both sub-
systems could now access copies of the configuration contained in the web
container.

The user interface is provided with access the GeoServer application
configuration through the extension of GeoServerAction:

class GeoServerAction extends Action {
 UserContainer getUserContainer(HttpServletRequest httpServletRequest)
 GeoServer getGeoServer(HttpServletRequest httpServletRequest)
}

The preceding classes make use of the utility methods of the Requests class:

getGeoServer(HttpServletRequest httpServletRequest)
getValidationProcessor(HttpServletRequest httpServletRequest)
getUserContainer(HttpServletRequest httpServletRequest)

These changes have resulted in the following benefits:

• Improved startup process

• Ability to unit test core GeoServer components

- 13 -

3.1.2 Data Transfer Objects (DTO)

Our implementation of Data Transfer Objects for GeoServer configuration
proceeded smoothly.

This layer of indirection has afforded parallel development of the Web Based
Configuration User Interface and the GeoServer application.

One unexpected consequence of the creation of well-documented Data Objects
has been the temptation to extend them through subclassing.

In practice this has several drawbacks:

- Application Objects have different documentation requirements then a DTO
Object. An Application Object needs to document properties in terms of use,
rather than configuration.

- Application Objects need to limit modification to well-known configuration
methods. An Application Object should not have set methods for many
properties supported by a DTO Object.

In response to these issues we have been forced to mark the Data Transfer
Objects as final.

3.1.3 Ported JUMP Network Builder

Several desired validation tests are defined in terms of network based
constraints.

We have ported a well-documented Network Builder from the JUMP Feature
Model to the Geotools2 Feature Model.

This has succeeded in allowing the Validation Processor access to powerful
technology from another sphere of open source development.

- 14 -

3.2 Implementation Extensions

3.2.1 Attribute Based XMLSchema Generation

The use of XMLSchema to represent FeatureType schema information has
resulted in several interesting developments.

GeoServer has included support for a user defined XMLSchema fragment, or the
generation of an XMLSchema document based on a live Geotools2 data store.

The definition of schema information in GeoServer is provided by:

• The schema.xml file defines an XMLSchema fragment:

<xs:complexType name="Deletes_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="id" type="xs:string" minOccurs="0"/>
 <xs:element ref="gml:pointProperty" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

• The info.xml file defines a list of attributes:

<?xml version="1.0" encoding="UTF-8"?>
<featureType datastore="cite_postgis">
 <name>Deletes</name>
 <SRS>32118</SRS>
 <title>test delets</title>
 <abstract>This is some cite features we can delete</abstract>
 <keywords>delete, New York City, TOPP</keywords>
 <latLonBoundingBox dynamic="false"
 minx="-74.27000" miny="40.50000" maxx="-73.80000"
maxy="40.94000"/>
 <attributes/>
 <styles default="normal"/>
</featureType>

• The schema.properties file was added during the release of GeoServer 1.1.
This file captures the minOccurs and maxOccurs information from the
XMLSchema fragment

• The live data store provides schema information at runtime.

To resolve the duplicated schema information we have:

- Implemented limited parsing of the XMLSchema fragment

- Implemented AttributeTypeDTO for user defined XMLSchema information

- Implemented a mapping of attribute name and type to GML and XMLSchema
types allowing the use of GML property types such as gml:pointProperty.

These extensions allow improved handling of schema information without
duplication.

- 15 -

3.2.2 Handling of Type References

We have made a slight modification to the Validation Plug-In API presented in the
Validation Processor Implementation Report.

The Validation interface (from Validation Implementation Report) was:

interface Validation {
 String getDescription();
 String getName();
 int getPriority();
 String[] getTypeNames();
 void setDescription(description);
 void setName(String name);
 setTypeNames(String typeNames[])
}

The limitations of this designed were revealed in two ways.

1. Writing a BeanInfo class to describe a Validation Plug-In

2. Connecting a validation test to spatial information.

To address these limitations we have revised the Validation interface:

interface Validation {
 String getDescription();
 String getName();
 int getPriority();
 String[] getTypeRefs();
 void setDescription(description);
 void setName(String name);
}

The modifications are:

• Removal of setTypeNames method.
This change allows the specification of a property for each FeatureType used.

• Addition of getTypeRefs() method (replacing getTypeNames() method)
This change allows the property name to match the use of typeRefs to identify
FeatureTypes.

We have chosen to use the reference pattern dataStoreId:typeName to identify
FeatureType. This allows the XML prefix to vary freely without impact to the
Validation Processor.

- 16 -

3.3 Implementation Recommendations
We have arrived at several recommendations for the final phase of development.

3.3.1 Sample Configuration

We would like to package the GeoServer Web Application Archive (war file) with a
sample configuration based on publicly available data stores and internal shape
files. By providing a working example for users to modify we hope to avoid any
initial frustration users may experience setting up the application for their first
time.

This also presents an opportunity to showcase the validation processor to the
existing GeoServer installation base.

3.3.2 Phase out the use of Document Object Model XML Parsing

The current XML reader used to process configuration information is based on
the Document Object Model. The rest of the GeoServer application makes use of
SAX based parsers.

GeoTools2 has recently deprecated their DOM based OGC Filter and GML
parsers. The configuration subsystem and the validation subsystem use these
components.

To account for these changes we will need to port our configuration readers to a
SAX based parser.

3.3.3 GML Harmonization

Progress has been made on several fronts in the handling of GML information.
We would like to share our recent experience in generating accurate XMLSchema
fragments with the GeoTools2 library.

- 17 -

3.3.4 Remove Data Transfer Object Delegates

Several classes in the global package have taken to making use of an internal
Data Transfer Object as a delegate. This approach provides a level of code reuse,
and lacks many of the drawbacks of sub-classing discussed earlier.

Some of the more apparent drawbacks to this approach include:

- Wrong Granularity/Abstraction:
By definition a DTO object provides a fine level of detail; it is used to group a
collection of configuration information for communication. Direct delegation
to the DTO object results in an unwieldy Application Object that requires
client code to access several properties to discern state.

- Integrity Gap:
By directly using the DTO provided as part of the configuration process, an
application is tempted to present information that it may be unable to deliver.
This is most often seen when accessing dynamic content.

When the above limitations are recognized, making use of a delegate can be made
to work. In the interests of maintaining a public code base we would like to
phase out this approach.

- 18 -

4 BIBLIOGRAPHY

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison Wesley,
2003.
http://www.martinfowler.com/eaaCatalog/transactionScript.html
http://www.martinfowler.com/eaaCatalog/domainModel.html

GOF Eric Gamma … [et al.]. Design Patterns Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

